DVX8044 commands v5.30

Document updates :

v1.00 : DB : 2010.07.26 : initial release for DVX8044 v5.00
v1.01 : DB : 2010.10.08 : update for DVX8044 v5.10
v1.02 : DB : 2011.01.10 : update for DVX8044 v5.20
v1.03 : DB : 2011.04.26 : update for DVX8044 v5.30

Short guide :

A1: Introduction

If you need to use your own Software Control program from a PC or WORKSTATION with an RS-232 or LAN port, the device allows communication through an ASCII code protocol.
The device treats any character that it receives on the RS-232 or LAN as a possible command but only accepts legal commands.
There is no starting/ending code needed in a command string.
A command does not require any special character before or after it. (It is not necessary to press "ENTER" on the keyboard).
When the device receives a valid command, it will execute the command. Then it will send back the status of the parameters that have changed due to this command. (a command can return)

If the command is correct but cannot be executed (no signal on the selected input ...) the device will just sends back the current status of the corresponding parameter.
If the command is invalid (value out of range, invalid command, syntax error ...), an error response will be returned to the control device.
All responses returned to the control device end with a carriage return <CR> and a line feed <LF> signaling the end of the response character string (see chapter A-3).

A2: Commands structure

Commands are made of numerical values followed by the command characters (one or two alphabetical letters).
Usually, same characters (letters) are used for [read command] and for [write command]
The indexes are defined number indicating on which the command apply. For example a layer number or an input number or a preset ... They are separated with a comma. There are commands without index and others with up to 3 indexes.

Each index is followed by a comma character.

a [write command] is made of indexes followed by the numerical value followed by the command characters.
Write command $=[[$ index, $] ..]+$. Value + Character (s) code (s)
a [read command] is made of indexes followed immediately by the command characters. (no numerical value)
Read command $=[[$ index, $] ..$.$] Character (s) code (s)$

A3: Examples

1) Command without index: SWITCHER_MODE

Command to set the switcher mode to mixer mode : OCM
Answer: CMO<CR><LF>
2) Command with 1 index : OFORMAT
Command to set the Main output format to XGA : 0, 12OF
Answer: OF0,12<CR><LF> which mean that the output format is now 1024×768
3) Command with 2 indexes : PE_INPUTNUM

Command to set the input 4 displayed in Layer A of Next Preset : 1, 1,4 IN
Answer : IN1,1,4<CR><LF> which mean that the layer A of the next preset will display the input 4 signal
4) Read command without index : TAKEAVA

Read command to know if the TAKE command is available : TA
Answer : TA1<CR><LF> which mean that the device is ready to accept the TAKE command
5) Read command with 2 indexes : SET_ASPECT_RATIO_OUT

Read command to know how is displayed a DVI signal plugged on the inpt $4: 3,1, \mathrm{sB}$
Answer : sB3, $1,2<C R><L F>\quad$ which mean that the DVI plug on input 4 is diplayed full screen

A4: Error codes

Answer : $\mathrm{E} 10<C R><L F>$	which mean invalid command
Answer : $\mathrm{E} 11<C R><L F>$	which mean index value error (index value out of range)
Answer: $: \mathbf{E 1 2 < C R > < L F >}$	which mean index number error (too or few indexes)

Document notation :

Some commands are only available as [Read command], they are status and are colored in blue as this line.
Some commands are colored in yellow as this line to indicate they were added or modified in this version.

${ }_{\text {group }}$	nomo		部	${ }^{\text {command osecripion }}$		$\stackrel{5}{5}$	1	Ootaud	vatu		matax 11	maxax 12	maxax ${ }^{\text {a }}$	$\frac{8}{2}$	
	N_USR_format	iU	iu	user corrected input tormat	RdWr 0		41			$0=$ Input 1 $1=$ Input2 $2=$ input3 $3=$ input 4 $4=$ input5 $5=$ input 6 $6=$ input7 $7=$ Input 8		$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1=\text { onlp Plug } \\ 2=\text { SSl Plug } \end{array} \end{aligned}$			
	N_TYPE	ik	ik	input signal type	RdIWr 0		17	13				$\begin{aligned} & \begin{array}{l} =\text { Analog Plug } \\ \text { and } \\ 2=\text { Sol Pliplug } \end{array} \\ & \hline \end{aligned}$			
	N_SYNC_LOAD	${ }^{17}$		75 ohms analog H sync load	RdWr ${ }^{0}$			0	($\begin{aligned} & 0=\text { High } \mathrm{Z} \\ & 1=75 \text { hms load }\end{aligned}$	$0=$ Input1 1 $2=$ Input 3 3 Input 4 5 Input 5 6 $=$ Input $7=$ Input 7		$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVIP Plug } \\ & 2=\text { = D P Plug } \end{aligned}$			
	N_USED	iu	iu	used input	RdW ${ }^{\text {a }}$				$0=$ unused input	$0=$ Input 1 $1=$ Input 2 $2=$ Input 3 $3=$ Input 4 $4=$ Input5 $5=$ Input6 $6=$ Input 7 $7=$ Input 8		$\begin{aligned} & 0=\text { Analog plug } \\ & \begin{array}{l} 1=\text { ovlplug } \\ 2=\text { SDI Plug } \end{array} \end{aligned}$			
	N_SD_STD	is		input vidoo standard	RdW ${ }^{\text {a }}$			0	$0=$ Auto $1=$ NTSC (M, J) $2=$ PAL (BDGHIN) $3=$ PAL (M) $4=$ PAL (M-Combination) $5=$ NTSC 4.43 $6=$ SECAM $7=$ PAL 60			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { OVIFPlug } \\ & 2=\text { SDI Illug } \end{aligned}$			
	N_CROPPING	ic		activate input finder for cropping	RdIWr 0			0				$\begin{aligned} & 0=\text { Analog Pug } \\ & \begin{array}{l} 1=\text { Dvplugu } \\ 2=\text { SDI Plugg } \end{array} \end{aligned}$			
	N_HDCP_ENABLE	ith		enable DVV-D input HDCP answer	RadWr ${ }^{\text {O }}$			1		$0=$ Input1 $1=$ Input2 $2=$ Input3 $3=$ Input4					
	N_CROP_MODE			input finder selection	RdW ${ }^{\text {a }}$										

group	Nomo		竬	Command Description		5	景		vato	maxext	matext2	${ }^{\text {maxex }}$ 3	${ }_{\substack{\text { Modifications } \\ \mathrm{v} .20050 .30}}^{\text {cosem }}$
	_REMAPPING	ir		input processing pending	Rd	0		0					
EDID	O-Fornat			IUPreatered format	wrr								
	EIID_RATE	ER	ER	EIID preferered frame frequency	RdNW	${ }^{6}$	10	8	$0=$ Custom Field Rate $1=23.9 \mathrm{~Hz}$ $2=24 \mathrm{~Hz}$ $3=25 \mathrm{~Hz}$ $4=29.97 \mathrm{~Hz}$ $5=30 \mathrm{~Hz}$ $6=50 \mathrm{~Hz}$ $7=59.9 \mathrm{~Hz}$ $8=60 \mathrm{~Hz}$ 9072 Hz $10=75 \mathrm{~Hz}$		$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1=\text { Oviplug } \\ 2=\text { Sol Plug } \end{array} \\ & \hline \end{aligned}$		
$\begin{aligned} & \text { nnut } \\ & \text { status } \end{aligned}$	SIG_HPOL	${ }^{\text {sh }}$		puth sync polarit					${ }^{\text {a }}$		$\begin{aligned} & \begin{array}{l} 0=\text { Analog plug } \\ 1=\text { Ovipug } \\ 2=\text { Sol Plug } \end{array} \end{aligned}$		
	sII_VPoL	sv	sv	input V sync polarity	Rd	0	${ }^{1}$	0	$0=$ Negativ Sync $1=$ Posivive Sync				
	SIG_SYNC_TYPE	sk	sk	input synctype	Rd	0		0	$0=H \& V$ Sync $1=$ TTL Composite Sync $2=$ Analog composite Sync $3=$ Synchro on green $(\mathrm{SOG}$ 3 = Synchro on green (SOG)		$\begin{aligned} & 0=\text { Analog Pug } \\ & \begin{array}{l} 1=\text { Dulpug } \\ 2=\text { SDI Plug } \end{array} \end{aligned}$		
	SIG_FREQ_FIELD	sf	sf	input trame frequency	Rd	0	65535	0	frame frequency in $11 / 100 \mathrm{~Hz}$ unit	$0=$ Input 1 $1=$ Input 2 $2=$ Input 3 $3=\operatorname{Input} 4$ $4=$ Input5 $5=$ Input 6 $6=$ Input 7 $7=$ Input 8	$\begin{aligned} & \begin{array}{l} 0=\text { Analog Pug } \\ 1=\text { Dulp } \\ 2=\text { SDIIIIGg } \end{array} \\ & \hline \end{aligned}$		
	SIG_FREQ_LINE	s1	st	input tine trequency	Rd	0	65535	0	line frequency in $\times 100 \mathrm{~Hz}$ unit	$0=\operatorname{Input} 1$ $1=\operatorname{Input} 2$ $2=\operatorname{Input} 3$ $3=\operatorname{Input} 4$ $4=\operatorname{Input5}$ $5=\operatorname{Input} 6$ $6=\operatorname{Input} 7$ $7=\operatorname{Input} 8$	$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1=\text { Dulp } \\ 2=\text { Sl Plug } \end{array} \end{aligned}$		
	SII_COMPLETE	sc	${ }^{\text {sc }}$	input scan complete	Rd	0		0	$1=$ input scan operations complete	$0=\operatorname{Input} 1$ $1=\operatorname{Input} 2$ $2=\operatorname{Input} 3$ $3=\operatorname{Input} 4$ $4=\operatorname{Input5}$ $5=\operatorname{Input6}$ $6=\operatorname{Input} 7$ $7=\operatorname{Input}$			

${ }_{\text {group }}$	namo	$\begin{array}{\|l\|} \hline \frac{0}{6} \\ \frac{1}{8} \end{array}$	章		$C^{\text {command oscripion }}$	Read	¢	1	$\substack{\text { Oefutut } \\ \text { value }}$		valuo		maxax 1	matax 12	maxax 13	$\frac{8}{2}$	${ }_{\substack{\text { Mosifications } \\ \text { v.20 } 0.30}}^{\text {c. }}$
	SET_HPOS	SH	sh		input signa horizonal position	RdIWr 0		2048	1024		1024 = neutral			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVIPlug } \\ & 2=\text { SII Plug } \end{aligned}$			
	SET_VPOS	sv	sv		input signal verical position	RdW ${ }^{\text {a }} 0$		2048	1024		$1024=$ neutral			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVV Plugg } \\ & 2=\text { SDI Plug } \end{aligned}$			
	SET_HSIIE	sw	sw		input signal horizontal size	RdIWr 10		4096	2048		$2048=$ neutral			$\begin{aligned} & 0=\text { Analag Plug } \\ & 1=\text { onvolpug } \\ & 2=\text { Sol Piug } \end{aligned}$			
	SET_VSIIE	sh	sh		input signal vericial size	RdW ${ }^{\text {a }} 0$		4096	2048		2048 = neutral			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVVIPlug } \\ & 2=\text { SII Plug } \end{aligned}$			
	SET_RRIGHTNESS	sg	sg		input signal brighness	RdIWr 0		255	${ }^{128}$		128 = neutral			$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1 \\ \text { = Onvpliug } \\ 2=\text { Sil Plugg } \end{array} \end{aligned}$			
	SET_COntrast	sc	sc		input signal contrast	RdW ${ }^{\text {a }} 0$		255	128		128 = neutral			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { oviploug } \\ & 2=\text { Sol Plug } \end{aligned}$			
	SET_COLOR	sr	sr		input signal color level	RadWr 0		255	128		128 = neutral			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { DVI Plug } \\ & 2=\text { SDI Plug } \end{aligned}$			
	SEt_HUE	su			input signal hue (NTSC only)	RdIWr 0		255	128		128 = neutral			$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1=\text { oviplug } \\ 2=\text { SDII Plug } \end{array} \end{aligned}$			
	SET_HTOTAL	st			input ismal total pixel per line	RadWr 2	200	65535	200		Unit: pixels			$\begin{aligned} & 0=\text { Analog Plug } \\ & =\begin{array}{l} 1=\text { Onv Plug } \\ 2=\text { SII Plug } \end{array} \end{aligned}$			
	SET_htotalmaxi	${ }_{s x}$			input signal maximum total pixel per line	Rd		65535	200		Unit: pixels			$\begin{aligned} & 0=\text { Analog Plug } \\ & 1=\text { oviplug } \\ & 2=\text { Sil Plug } \end{aligned}$			
	SET_PHASE	ss			input signal phase	RdWr 0		${ }^{63}$	0		2 pixels range phase			$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1=\text { oviplug } \\ 2=\text { SDII Plug } \end{array} \end{aligned}$			
	SET_AUTOCAD	sa			input signal autocontering	RdM ${ }^{\text {a }}$ O					(auto clear)			$\begin{aligned} & \begin{array}{l} 0=\text { Analog Plug } \\ 1=\text { oviplug } \\ 2=\text { SDII Plug } \end{array} \end{aligned}$			

soup	nemo	\%	${ }^{\text {旦 }}$	command osecripion	Reat	5	1		value	matax 11	matax 12	motax 13	$\frac{8}{2}$	
	PE_CROP_WIN_POS_V	cv	cv	layer cropping V position	RdIWr 10		${ }^{65535}$	32768	in \%(65535 $=100 \%$ = full top cropping)				1	
	E_CROP_WIN_SIZE_H	cw	cw	layer H cropping size	RdWr 10		58881		in \% (65535 = 100\%)		$0=$ Background Frame $1=$ Layer $2=$ Lay \quad B $3=$ Layer $4=$ Laye $5=0.09$ $6=$ Oogo $7=$ Frame Mask		1	
	E_CROP_WIN_SIE_V	cs		layer V cropping size	RadWr 10		58981		in \% (65535 $=100 \%$)				1	
	PE_ALPHA	PA	pA	layer transparency	RadWr 10		255	0	$0=$ opaque, $255=100 \%$ = full trassparency				1	
	PE_BORDER_STYLE	bs		border style	RdWr 0				$0=$ No Brarder $1=$ Edgoost 3 3 = = nhaoto $4=$ Smooth shadow		$0=$ Background Frame $1=$ Layer $2=$ Laye B $2=$ Layer C $4=$ Laye D $5=$ Logo $6=$ Logo $6=$ $7=$ Frame Mask		1	
	PE_BORDER_COLOR	bc		order color	RdIWr 10		544	0	color number		$0=$ Background Frame $1=$ Layer $2=$ Ley \quad B $3=$ Layer $4=$ Laye $5=0.09$ $6=$ Oogo $7=$ Frame Mask		1	
	PE_BORDER_ALPHA	bA		border trasparency	RdWr 10		255	128	255 f full transparency				1	
	PE_BORDER_SIIE_H	${ }^{\text {bH }}$	${ }^{\text {bH }}$	border H size	RdW ${ }^{\text {a }}$ O		${ }^{127}$	10	in pixel				1	
	PE_BORDER_SIIE_V	bv	bv	border V size	RadWr 10		${ }^{127}$	10	in pixel				1	
	E_BORDER_SHADOW_POS			layer shadow position	RdWr ${ }^{0}$		3	0					1	
	PE_OPENING_TRANSITIION	ot		layer opening tanstion	RdWr 0		2						1	
	E_OPENING_TRANSTITIONAAY	ow		opening transition direction	RdW ${ }^{\text {a }} 0$		${ }^{3}$	${ }^{0}$	$0=$ Left to tight Transition $1=$ Right toletf T Tarasititon $2=$ Bottom totop $3=$ Top to bottom				1	

${ }^{\text {crup }}$	vomo	$\begin{array}{\|l\|} \hline \frac{8}{6} \\ \hline 8 \\ \hline 8 \end{array}$	1	${ }^{\text {command ooseripoen }}$	Reed	5	1		value	matax ${ }^{\text {c }}$	matax 12	moxa 13	$\frac{8}{2}$	
	PE_OPENIN__URATION	od 0	ob	opening transition time	RdWr 0		255	10	in $1 / 10$ second (ex: $105=10.55$				1	
	E_Closing_transition	${ }^{\text {ct }}$	ct	layer closing trasition	RadWr 10				$\begin{aligned} & 0=\text { Cut Transition } \\ & 1=\text { Fade Transition } \\ & 2=\text { Slide Transition } \end{aligned}$				1	
	E_CLOSING_TRANSITION_WAY			closing transition direction	RdIWr 10				$\begin{aligned} & 0=\text { Left to right Transition } \\ & 1=\text { Right toleft Trasition } \\ & 2=\text { Bottom toto Trasition } \\ & 3=\text { Top to bottom Transition } \end{aligned}$				1	
	EE_CLOSING_dURATION	cD		closing transition time	RdWr ${ }^{\text {o }}$		255	10	in 1/10 second (ex: $105=10.55$)		$0=$ Backround Frame $1=$ Layer $2=$ Ley $3=$ Leyor $4=$ Leyo $5=$ Log $6=0$ $7=$ Crome 7		1	
	E_FREEZE_INPUT	pz		input image freze	RadWr 10			0	1 = input freze				1	
	P-PLUGNUM			ive pug on input										
	- -KEYING_ENABLE	KE		keyingotiting enable	RdWr 0			。	1 = enable keyingtting					
	-KEYING_LAYER	KL	KL	keying layer	Rdwr 1			2	$\begin{aligned} & 1=\text { Layer A } \\ & 2=\text { Layer } \\ & 3=\text { Layer } \\ & 4=\text { Layer } \end{aligned}$					
	-_KEVING_TYPE	кт		keying type	RdIWr 10			3	$\begin{aligned} & 0=\text { Luma titling } \\ & 1=\text { Chroma titling } \\ & 2=\text { luma keying } \\ & 3=\text { chroma keying } \end{aligned}$					
	- -KEYING_SHADOW	ks		shadow level under titiling layer	RdWr 10		${ }^{255}$	0	$\begin{aligned} & 0=0 \%=\text { background attenuated, } \\ & 255=100 \%=\text { black background } \end{aligned}$					
	-_KEYING_R_LEVEL	KR		keying red level	RdIWr 10		255	0	$0=0 \%, 255=100 \%$					
	-KEEYING_G_LEVEL	kG		keying green level or luma level	RdW ${ }^{\text {a }}$ O		255	255	0=0\%,255 = 100\%	$0=$ Current Preset $1=$ Next Preset $2=$ Previous Preset $3=$ Memorized Preset 1 $4=$ Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4				

${ }_{\text {group }}$	veme		敾	Command osecripion	Reat	$\underline{5}$	\%		vate	masext	mexata	maxex ${ }^{\text {a }}$	$\frac{8}{2}$	
	-_KEYING_B_LEVEL	KB		keying blue level	RdWr 0		255	0	$0=0 \%$, 255 = 10\%					
	-KEEYNG_TOLER	кH	kH	keying tolerance	RdWr 0		${ }^{255}$	16	$0=0 \%$, 255 = 10\%					
	-KEEYING_INV	кi		key invert	RdWr 0		1	0	1 I invert key (inside keying)					
	-_KEYING_GRAB_ENABLE	kg	Kg	keying graber mode	RdWr 0	0	1	0	1 = grabber enable					
	- KEYYIN_GRAB_H	kh		keying grabber H position	RdWr 0		65535	32768	in \% of output horizontal size					
	- -KEYING_GRAB_V	kv		keying graber V postion	RdWr 0		${ }^{65335}$	32768	in \% of oftput vericical size					
	P-KEYING_GRAB_GET	кс		keying grabber enable	RdWr 0			0	(auto clear)					
	PCLONE	PC		clone mode (copy Next preset paramelers to Current)	RdWr 0			0	$0=$ never equalize Main and Preview for this vars group 1 = equalize only for front panel settings 2 = always equalize Main and Preview for this vars group					
	P-UPDATE	10	10	preset updated	RdWr 0		1	1	${ }^{0} 0$ beforo sending the preset					
	P-LINKED_INPUT	"		dualhead inputs (use lower number of the pair) (ex: 1=input1 or input2)	RdWr 0		4	0						
	P-Force_duration	FD	fo	presef force duration (overwite layers durations)	RdWr 0		255	0	$0=$ no forcing, else in $1 / 10$ second	$0=$ Current Preset $1=$ Next Preset $2=$ Previous Preset $3=$ Memorized Preset 1 $4=$ Memorized Preset 2 $5=$ Memorized Preset 3 $6=$ Memorized Preset 4				
¢	${ }_{\text {TAKE }}^{\text {TAKE_TPPE }}$	${ }_{\text {TT }}^{\text {TK }}$	${ }_{\text {TK }}^{\text {TT }}$	TAKE, Next preset become Current next TAKE type	${ }_{\text {Rd }}^{\text {Radw }}$	0_{0}^{0}	$\frac{1}{4}$	0^{0}	(auto clear) $0=$ standard TAKE $1=$ sequenced TAKE, due to not enough front end $2=$ sequenced TAKE, due to not enough scaler $3=$ sequenced TAKE, due to cross not possible $4=$ sequenced TAKE, due to keying cross not possible					
	TAKE W W Ror		${ }_{\text {TR }}$	TAKE when ready	RdMr 0		1	0	(auto clear)					
		${ }_{\text {TA }}{ }_{\text {TA }}$	${ }_{\text {TA }}$	TAKE avaliable	${ }_{\text {Rd }}^{\text {RdWr }}$ O ${ }^{\text {a }}$	0	1100	\bigcirc	O 0 busy, TAKE not possible					
	${ }_{\text {IBAR }}^{\text {TBAR_POS_StATUS }}$		${ }_{\text {NK }}^{\text {NK }}$	${ }_{\text {trar value }}^{\text {thar position status }}$	${ }_{\text {Rd }}^{\text {RdMr }}{ }^{\text {a }}$		1000		in in 11000 of \%					
	TBAR_OFFSET_LOW	${ }^{\text {NL }}$	${ }^{\mathrm{NL}}$	traar bottom offset	RadWr 0	0	1000	100	in $11 / 100$ of \%					
	TBAR_OFFSET_HIGH	$\mathrm{NH}^{\text {a }}$	NH	thar top offset	RdWr 0	0	1000	900	in 11400 of \%					
	TBAR_Status	Ns	ns	tbar status	RdWr 0			0	$0=$ Tbar not allowed $1=$ Tbar allowed $2=$ Tbar ready $3=$ Tbar active					
	TBAR_ABORT CLIGN_PRESET	- ${ }_{\text {ND }}$	${ }_{\text {ND }}^{\text {NP }}$	cancel any tbar operation started (clear tbar position status) selected preset	${ }_{\text {RdM }} \mathrm{RdO}$		${ }^{1}$	2	(auto clear) $0=$ Current Preset $1=$ Next Preset $2=$ Previous Preset					

DVXII v5.30

${ }_{\text {soup }}$	Nome	䂠	㻃	${ }^{\text {commandosacripion }}$	Reat	$\stackrel{5}{\text { c }}$	是	${ }_{\text {Ofolut }}^{\text {Ofaute }}$	Value	maxext	mexax ${ }^{\text {a }}$	motax ${ }^{\text {a }}$	$\stackrel{8}{2}$	${ }^{\text {Mosifications }}$ v．20 0.30
	Softedge＿black＿G＿Level	sg		green component level in black rea	dWr		63	0	$0=$ Black	$0=$ Left／Top Border $1=$ Bottom／Right Border				
	SOFTEDEE＿BLACK＿B＿LEVEL	SB	sB b	mponent level in black	dw		${ }^{63}$	\bigcirc	0 B Black	$0=$ Left Top Border $1=$ Bottom／Right Border				
${ }^{\text {cogos }}$	PMODE			Togotrame mode	Rawr				$0=$ Use Logo Frame mode 1 ＝Logo recording mode 2 ＝Live logo recording mode 3 ＝Frame recording mode 4 ＝Frame mask recording mode 5 ＝Logo clear mode $6=$ Frame clear mode 7 ＝Frame mask clear mode 8 ＝Complete frame，logo and maskFrame clear mode 9 ＝Transfer Mode					
	EXECUTE	PG	PG	logolfame control	RdIWr	0		\bigcirc	${ }^{\text {starar operation requested by logoframe mode．（recording or erasure）（auto }}$					
	PABort	PA	PA	logoftrame recording abort	RdW ${ }^{\text {r }}$		1	\bigcirc	（auto clear）					
	Status	PE	PE ${ }^{10}$	logoframe control status	Rd	0	5							
	PFRAMES＿VALID	PF	PF		Rd	0	1023	0	$0=$ no logoframe availible				5	
	PLogos＿VALID	PZ	${ }^{\text {P2 }}$	logo available status，bit field with bit0＝logo1 \ldots bit7＝logo8	Rd	0	511	0	$0=$ no logoframe available				5	
	CCAPTURELEFT	${ }^{\text {PL }}$	PL	logofframe horizontal position	RdWWr	0	32767	0	in pixel					
	PCAPTURE＿TOP	${ }^{\text {PT }}$		logotrame vericial position	${ }_{\text {RdWr }}^{\text {RodWr }}$		${ }_{32767}^{3277}$	${ }_{400}^{0}$	in pixel					
	CCAPTURE HEIGHT	${ }^{\mathrm{PH}}$	PH ${ }^{10}$	logolframe capture vericial size	RdWr		32767	300	in pixel					
	PCAPTURE＿LUMAKEY＿TYPE	${ }^{\text {PY }}$	PY ${ }^{10}$	logoframe keying mode	RdWr			0	\cdots					
	PCAPTURE＿LUMAKEY＿LEVEL	Pl^{1}		logoftrame luma key level	RdIWr		255		$0=$ black， $255=$ white	$0=$ Main Output $1=$ Preview Output $2=$ Recording Output	${ }_{\text {a }}^{\substack{0=\text { black } \\ 1=\text { White }}}$			
	PCAPTURE＿BACK＿COLOR	Pc		matting color during logoframe lumakey	RdIWr				color number in 0 to 7	$0=$ Main Output $1=$ Preview Output $2=$ Recording Output	$0=$ llack $1=$ White $\substack{\text { a }}$ a			
	PCAPTURE＿LUMAKEY＿INVERT	Pv		key invert	RodWr			0		$0=$ Main Output $1=$ Preview Output $2=$ Recording Output				
	PCAPTURE＿INDEX			logolframe number for recerring	RdW ${ }^{\text {r }}$									
	SStatus＿midth	Pw		logolframe horizontal size status	Rd		32767							

${ }_{\text {group }}$	Nomo	$\begin{array}{\|l\|} \hline \frac{0}{\mathrm{i}} \\ \stackrel{\rightharpoonup}{8} \\ \hline \end{array}$	悉	Commandosecripion	Read	5	是	Oefout	value	matax ${ }^{\text {a }}$	maxal	matax ${ }^{\text {a }}$	$\frac{8}{2}$	
	GPIo_TRIG_EVENT	GE	GE	GPIO trigger event	RdWr		207							
	grio_status	${ }^{\text {as }}$		GPIO status	RdNW	0		0						
	TALLY_MODE	tm		TALLY input range mode	RdWr			0						
	TALIY_TRIG	$f^{t t}$	${ }^{\prime t}$	machine input tally trigger	Rdwr		${ }^{64}$			$\begin{aligned} & 0=\text { Tally } 1 \text { output } \\ & 1=\text { Tally } 2 \text { output } \\ & 2=\text { Tally } 3 \text { output } \\ & 3=\text { Tally } 4 \text { output } \end{aligned}$				
	Tally_status	${ }^{\text {ts }}$		${ }^{\text {tally staus }}$	Rd	0		0	($\begin{aligned} & 0=\text { OFF } \\ & 1=0 \text { O }\end{aligned}$	$0=$ Tally 1 output $1=$ Taly 2 output $2=$ Tally $3=$ Tally 3 output output				
$\begin{aligned} & \text { devices } \\ & \text { sync } \end{aligned}$	Dev_SYNC_STATUS	ss		devsync satus	${ }^{\text {Rd }}$		10							
lot	CopY_MEM_REQUEST			Imput seting copy, conirol					$\begin{aligned} & 0=\text { None } \\ & 1=\text { read request } \\ & 2=\text { write request } \end{aligned}$					
				ininut seting copy, Slot number	${ }_{\text {Rdwr }}^{\text {Rdowr }}$		${ }_{6}^{40}$	0						
Layouts	COPR MEM VALUE	${ }^{\text {pL }}$		input setitig copy, value	${ }_{\text {RdM }}^{\text {Rolwr }}$		${ }^{16535}$							

${ }^{\text {coup }}$	\cdots		${ }^{\text {commama americon }}$	neot	5	1	Somb	vato	maxas	measan	neasa		
	Aaver_Lavout	44	layer lyyut (auto ciear)	Rdwr 0					O = Background Frame 1 = Layer A 2 = Layer B 3 = Layer C 4 = Layer D 5 = Logo A $6=$ Logo B 7 = Frame Mask				
	LAYOUT KEEP SIZE STDBYSTATUS STDBYSTATUS	$\frac{L K}{\text { LK }}$ LK	liveravout kes size										
	STOBYREQUEST	wa wa	standby request	Radwr ${ }^{\circ}$				$\begin{aligned} & 1=\text { Sleeping } \\ & 0=\text { Running } \\ & 1=\text { Sleeping } \end{aligned}$					

Note	Comment
$\mathbf{1}$	In Matrix mode, use Layer A index value to access OUT1 commands and Layer C index value to access OUT2 commands.
$\mathbf{2}$	Use values from 1 to 8 to access Frame and Logos.
$\mathbf{3}$	only one input reference for every output.
$\mathbf{4}$	In Mixer/Eseb mode, use Layer A to access Next Preset (Prelist audio output) or Current Preset (Main audio output) In Matrix mode, Layer A corresponds to Audio Output 1 and Layer C to Audio Output 2 for each Preset
$\mathbf{5}$	Values of the command are bit masked

